

From installation to integration: phase transitions in Advanced

M. Landry for the LIGO Scientific Collaboration

11 September 2013 LIGO-G1300813

Outline

- Introduction to Advanced LIGO
 - » Gravitational waves
 - » Advanced LIGO design
- Installation status
- Integration status
 - » LIGO Livingston: Dual-recycled Michelson (*DRMI*)
 - » LIGO Hanford: Half-interferometer (*HIFO*)
- Science with Advanced LIGO
 - » Expected NS-NS merger rates
 - » Early science run scenario
 - » LIGO India

Gravitational waves

- Predicted by Einstein's theory of gravity, General Relativity, in 1916
- Generated by changing quadrupole moments such as in co-orbiting objects, spinning asymmetric objects
- Interact weakly with matter even densest systems transparent to gravitational waves
- An entirely new spectrum in which to explore the universe
- Strain = ∆length/length
- GW strain at Earth ≈ 10⁻²²

Advanced LIGO

- Power recycled Fabry-Perot Michelson with Signal recycling (increase sensitivity, add tunability)
- Active seismic isolation, quadruple pendulum suspensions (seismic noise wall moves from 40Hz to 10Hz)
- DC readout, Output Mode Cleaner (better use of photons)
- ~20x higher input power (lower shot noise)
- 40 kg test masses (smaller motion due to photon pressure fluctuations)
- Larger test mass surfaces, lowmechanical -loss optical coatings (decreased mid-band thermal noise)
- Fused Silica Suspension (decreased lowfrequency thermal noise)

10X more sensitive, >10X harder...

- 14 unique fabricated parts
- 68 fabricated parts total
- 165 total including machined parts and hardware

Test mass suspension From Initial LIGO

- 188 unique fabricated parts
- 1569 fabricated parts total
- 3575 total including machined parts and hardware

Test mass suspension From Advanced LIGO

Phases

LIGO Livingston Install

Pre-stabilized laser

- Frequency noise measured at Livingston
- 3 W input to IMC
- noise between 10 and 100 Hz is already better; expect to meet spec without difficulty

LIGO Livingston input mode cleaner

Livingston DRMI

Dual-recycled Michelson Interferometer ('DRMI')

Frequency (Hz)

» Nearly all parts in place for this stage: currently vented for additional components

Power recycled Michelson locked on DC readout, calibrated Input ITMX Power Light transmitted past the output mode cleaner 10⁻⁶ L1:OAF-CAL_MICH 10⁻⁷ L1:OAF-CAL_PRCL Signal Recycling Cavity Magnitude (m/Hz^{1/2}) 10⁻¹¹ Differential Arm Length ← Readout Output Mode 10⁻¹⁶ 10⁻¹⁷ 10⁻¹ 10² 10³ 10 13

LIGO Hanford Install

Hanford single-arm integration

- New lock acquisition strategy developed for Advanced LIGO
 - Arm Length Stabilization system controls each arm cavity, putting them offresonance
 - The 3 vertex lengths are controlled using robust RF signals
 - Arm cavities are brought into resonance in a controlled fashion
- Therefore, commissioned single 4km arm

10⁻⁴
10⁻¹
10⁻²
10⁻¹
10⁻¹
10⁻¹
10⁻¹
10⁻¹
10⁻¹
10⁻¹
10⁻¹
10⁻²
Frequency (Hz)

Landry - TAUP 11 Sep 2013

Hanford HIFO-Y

- Half-Interferometer ('HIFO')—Y arm
 - » Green light demonstrated to allow a continuous controlled positioning of cavity
 - » Fluctuations of the HIFO-Y length ~5 Hz RMS (meets noise requirement of 8Hz)
 - » May require acoustic mitigation (in-air periscopes in corner and table motion) and modified suspension control filters for known mechanical modes

Science

Source^a

See E. Thrane's talk (today) and L. Price's (Thu) for more prospects on detection

Binary neutron stars

- Initial LIGO reach: 15Mpc; rate ~ 1/50yrs
- Advanced LIGO ~ 200Mpc
- 'Realistic' rate ~ 40 events/yr

Table 5. Detection rates for compact binary coalescence sources.

 $\dot{N}_{\rm low} {\rm vr}^{-1}$

 $\dot{N}_{\rm re} \, {\rm vr}^{-1}$

 $\dot{N}_{\rm high} \, {\rm vr}^{-1}$

		- · low <i>y</i> -	- 16 3-	- Ingn J-	- Illax J-
	NS-NS	2×10^{-4}	0.02	0.2	0.6
	NS-BH	7×10^{-5}	0.004	0.1	
Initial	BH-BH	2×10^{-4}	0.007	0.5	
	IMRI into IMBH			<0.001 ^b	0.01^{c}
	IMBH-IMBH			$10^{-4 d}$	$10^{-3}e$
av,	NS-NS	0.4	40	400	1000
	NS-BH	0.2	10	300	
Advanced	BH-BH	0.4	20	1000	
	IMRI into IMBH			10 ^b	300°
	IMBH-IMBH			0.1 ^d	1 ^e

Rates paper: Class. Quant. Grav, 27 (2010) 173001

IFO

 $\dot{N}_{\rm max} {\rm yr}^{-1}$

Current guess for sensitivity evolution, observation

- Vertical scale is the number of binary inspirals detected
- Rates based on population synthesis, realistic but uncertain
- LIGO Scientific
 Collaboration (LSC)
 preparing for the data analysis challenge
- Close collaboration with Virgo
- Early detection looks feasible
- arXiv:1304.0670, arXiv:1003.2480

LIGO India

- Compelling science case for an interferometer outside the plane of existing detectors
- LIGO Lab, LSC to send components of third interferometer (second at Hanford) to India
- Currently reviewing installation planning must complete assembly, store components, later, send to India

Fairhurst 2011

Summary

- Installation and integration phases interleaved until early 2014, followed by extended commissioning to late 2014: acceptance of Advanced LIGO interferometers
- First science runs, at reduced sensitivity expected in 2015 and 2016
- Anticipate regular detections before the decade is out

